Desulfonation of linear alkylbenzenesulfonate surfactants and related compounds by bacteria.
نویسندگان
چکیده
Pseudomonas putida S-313 (= DSM 6884) grew in sulfate-free medium when the sole sulfur source supplied was one of several arylsulfonates involved in the synthesis, application, or biodegradation of linear alkyl-benzenesulfonate (LAS) surfactants. 2-(4-Sulfophenyl)butyric acid, 4-n-butyl-1-methyl-6-sulfotetralin, and 4-toluenesulfonic acid were each completely utilized during growth, as were the model LAS 1-(4-sulfophenyl) octane and the arylsulfonate dyestuff Orange II. The product in each case was the corresponding phenol, which was identified by gas chromatography-mass spectrometry or H nuclear magnetic resonance. Stoichiometric conversion of 4-toluenesulfonic acid to 4-cresol was observed. The molar growth yields observed were 2.4 to 2.8 kg of protein per mol of S, which were comparable to the yield for sulfate. Commercial LAS disappeared from growth medium inoculated with strain S-313, but negligible growth occurred; digestion of cells in alkali led to recovery of the LAS mixture, which seemingly sorbed to the cells. However, mixed culture L6 was readily obtained from batch enrichment cultures containing commercial LAS as a sole sulfur source and an inoculum from domestic sewage. Culture L6 desulfonated components of the LAS surfactant to the corresponding phenols, which were identified by gas chromatography-mass spectrometry. Compounds with shorter alkyl chains were desulfonated preferentially, as were the centrally substituted isomers. In the presence of 200 muM sulfate, culture L6 grew well and LAS disappeared, although this was due purely to sorption, as shown by digestion of the cells in alkali. Thus, under sulfate-limited conditions, LAS can be desulfonated directly.
منابع مشابه
Desulfonation and degradation of the disulfodiphenylethercarboxylates from linear alkyldiphenyletherdisulfonate surfactants.
Earlier work showed that the biodegradation of a commercial linear monoalkyldiphenyletherdisulfonate surfactant as a carbon source for microbial growth leads to the quantitative formation of corresponding disulfodiphenylether carboxylates (DSDPECs), which were not degraded. alpha-Proteobacterium strain DS-1 (DSM 13023) catalyzes these reactions. These DSDPECs have now been characterized by high...
متن کاملBiodegradation of linear alkylbenzene sulfonates in sulfate-leached soil mesocosms.
Aromatic sulfonates (R-SO(3)(-)) can be used as sulfur sources by sulfate-starved bacteria in laboratory cultures and the corresponding phenols are excreted from the cells. The present study was conducted to demonstrate whether such desulfonation reactions also occur in sulfate-leached agricultural soil, where desulfonation of organic sulfur compounds may have agronomic importance as a S source...
متن کاملMicrobial desulfonation.
Organosulfonates are widespread compounds, be they natural products of low or high molecular weight, or xenobiotics. Many commonly found compounds are subject to desulfonation, even if it is not certain whether all the corresponding enzymes are widely expressed in nature. Sulfonates require transport systems to cross the cell membrane, but few physiological data and no biochemical data on this ...
متن کاملAn alpha-proteobacterium converts linear alkylbenzenesulfonate surfactants into sulfophenylcarboxylates and linear alkyldiphenyletherdisulfonate surfactants into sulfodiphenylethercarboxylates.
The surfactant linear alkylbenzenesulfonate (LAS; 0.5 mM) or linear monoalkyldiphenyletherdisulfonate (LADPEDS; 0.5 mM) in salts medium was easily degraded in laboratory trickling filters, whereas carbon-limited, aerobic enrichment cultures in suspended culture with the same inocula did not grow. We took portions of the trickling filters which degraded LADPEDS, shook the organisms from the soli...
متن کاملParvibaculum lavamentivorans gen. nov., sp. nov., a novel heterotroph that initiates catabolism of linear alkylbenzenesulfonate.
Strain DS-1T is a small (0.8 microm in length and 0.2 microm in diameter) heterotrophic bacterium able to omega-oxygenate the commercial surfactant linear alkylbenzenesulfonate (LAS) and shorten the side chain by beta-oxidation to yield sulfophenylcarboxylates. The morphotype is widespread in cultures able to utilize LAS, and a second organism with similar characteristics, strain AN-8, is now a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 60 7 شماره
صفحات -
تاریخ انتشار 1994